View Single Post
Old 08-06-2010, 11:16 AM   #8
ShrimpBurrito
Site Sponsor
 
ShrimpBurrito's Avatar
 
Join Date: Jul 2006
Location: Sunny Beaches of Los Angeles
Posts: 3,239
Default

Quote:
Originally Posted by ThePair View Post
Ahh, I think I see. Under normal conditions, the TV sends DC to the TM charger, and thus to the battery.
No. The TM charger is actually a function of the converter, which only operates on AC power. If you do not have AC power, the TM charger does not function. What provides DC power to the TM while on the road is simply a wire that runs from the TV battery, alternator, or charging circuit directly to the TM battery. It actually is connected to the TM battery via the TM's DC distribution panel, which is simply a screw. From that same screw, there is another wire that goes to the TM battery. There is no fancy circuitry involved. In fact, it's the same circuitry as if you were to "jump" the TM's batteries with a pair of jumper cables coming from the TV.

Quote:
Originally Posted by ThePair View Post
In your installation, you're removing the hot lead from the TV to the TM's charger, and connecting that wire to this thing instead, so the TM charger does nothing through the Bargeman, but will still charge the battery fine through 120V AC. This device will directly charge the battery independent of the TM converter/charger, but only turns on when the bargeman is connected to the TV. And, the upshot is higher Amps for charging the battery from the TV.
Yes, all of this is correct.

Quote:
Originally Posted by ThePair View Post
If that's it, it's quite a clever solution, and for a single battery setup like mine, could indeed make a non-electric site a possibility, as the recharge time at idle wouldn't be too outrageously long (I'd hope!).
If you find yourself wanting to do more dry camping, a battery monitor like the LinkLite or Trimeric is invaluable. That is the only real way to get a sense of how much power you are using and budget your energy accordingly. During summer time, we might use 10-15 Ah/day, but it's around 30 Ah/day in the winter due to longer light and furnace use. If this DC-input battery charger were to output 17A to the batteries, maybe 15A is actually being absorbed by the batteries (the rest is output as heat). So you'd have to idle the car for 1 hour to recharge 1 day's worth of juice during the summer, and 2 hours to recharge 2 day's worth during the winter.

Idling a car at a campsite is not ideal, but I'm not sure it's much worse than running a generator, especially for short periods.

Dave
__________________
2000 2720SL & 2007 3124KB
2005 Toyota Sequoia
Twin Battle Born 12v 100Ah LiFePO4 (BBGC2) batteries, 300W solar on rear shell, Link 10, Lift kit, Maxxis 8008 225 75/R15 E tires
ShrimpBurrito is online now   Reply With Quote